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INTRODUCTION

Core-Collapse Supernovae



CORE COLLAPSE SUPERNOVAE

Understanding core-collapse supernova explosions
is crucial to many difterent problems of astronomy.

Galactic Chemical Evolution

* Nucleosynthesis

» Stellar Feedback

Compact Object Formation

* Produce NS/ stellar mass BHs

Multi-Messenger Astronomy

* Qravitational Waves 09/1994

* Neutrino Emission
Credit: Larsson, J. et al. (2011).



CORE-COLLAPSE SUPERNOVA
EXPLOSIONS

~3 per century for a Milky Way | v .
type galaxy (Li et al. 2012).

More numerous than | -‘
thermonuclear explosions (4x). i

Liberate ~ 1058 neutrinos. |

Kinetic energies on the order of
1057 erg! B o . ., .

Produced by stars with masses
about 8 times more than the Sun.

THE REMNANT OF SN 1987A. SOURCE: NASA GSFC.



INTRODUCTION

CCSN Explosion Mechanism



EVOLUTION TOWARDS IRON CORE-
COLLAPSE IN A MASSIVE STAR

Massive stars burn heavier
and heavier elements.

Form an inert core primarily
of Fe peak elements.

Core becomes gravitationally
unstable as reactions remove
pressure sources.

Core collapses - rapidly !

CREDIT: R. J. HALL
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PHYSICS OF STELLAR CORE-COLLAPSE

"lron” Core Proto-Neutron Star

T

"Core-Collapse”

R~2000 km
t ~ 250 ms R~50 km

Y. ~027

p. ~ 1019 (g cm™) pe. ~ 10'* (g cm™)

Y, ~ 0.45



PHYSICS OF STELLAR CORE-COLLAPSE

"Bounce” Stalled Shock
Stiffening ot Core

_aunch Shock —

"Bounce” to

Stalled Shock " N8R 1/
t ~ 100 ms " &2 9
R=30 km Fe —* He
Not enough energy to T

Entropy slice of explosion of 20 solar mass stars.
promptly exp|0de Star Credit: O' Connor & Couch (2018b).



- VIVAL OF TH

- STALLED SHOCK

Delayed Neutrino Heating Mechanism

Needs ~105T erg to unbind the
star, explode.

PNS contraction releases energy
as neutrinos ~ 103 erg /s !l

Heating by neutrinos beneath
the stalled shock via absorption.

Only need a few % of released

neutrinos to drive explosion
(Bethe & Wilson 1985).

\

heating

cooling

9

RU S
PNS ¢

(convective)

Diagram showing revival of stalled shock.
Credit: Janka (2011).



ERA OF 3D CCSN SIMULATIONS

Fully-coupled!

3

Microphysics
(Nuclear EQOS, v-interactions,
nuclear kinetics)

Credit: Sean Couch

Time =0.477 5

(Vartanyan+ 2019)

(Moesta + 2014)

(Roberts + 2016) (Burrows + 2019)



Solved problem...right?



INTRODUCTION

The CCSN “Problem” and
possible solutions



THE CORE-COLLAPSE "PROBLEM’

How do we (try) to model stellar explosions?

Tme = 16.8 (ms)

L
o &

* 1D Stellar Evolution Codes
for pre-supernova evolution.

B &
o -~
c

L
(=]

* Evolve explosion in 2/3D
using multi-D hydro codes.

i 2
Entropy (kg/ba:yon)

w
o

* Shock failed to be revived in
some models.

/_
I
ol
(=

~
i

=
o
w2

Failed explosion using spherically symmetric
1D model from Couch + 2018.



THE CORE-COLLAPSE "PROBLEM’

How do we (try) to model stellar explosions?

Struggle to match range of
Type IIP explosion energies

of ~0.5-4B (Kasen & Woosely 2015).

3D exploding models show
low energies”?

Need to reach asymptotic
plateau requires longer
simulations (Burrows+ 2019).

Evolution of explosion energy for 3D CCSN models
from Burrows + 2019.




SOLUTION(S) TO THE CORE-
COLLAPSE '"PROBLEM"?

* General Relativistic Gravity - More
compact PNs lead to larger neutrino
luminosities.

e Sophisticated Neutrino Transport -
Full Transport + GR can result in
explosion.

* |nitial models/Perturbations - Pre-
SN models are not spherical and
can vary.

Volume rendering of the entropy
distribution from Roberts + 2016.
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INTRODUCTION

Deeper look in to the Pre-
Supernova Models



PERTURBATIONS IN THE PRE-
SUPERNOVA MODEL

v ~ 500 (km s7)

t ~ 155 (s)

(Couch + ApJL, 2015)

* 3D Octant model, ~ three minutes, evolved using 21 isotope network.

11



PERTURBATIONS IN THE PRE-

SUP

ERNOVA MO

DEL

3D Initial model leads to faster, stronger explosion.

(Tshock) [km]

1000 R e e e
K00 Angle-averaged Initial Model
B = 3D Initial Model _
600 |- _

400 -
200 [

0 0.1

$ —

02

tbounce 8]

0.4

Multi-D progenitors provide a solution to the core-collapse problem.

12



MULTI-DIMENSIONAL
SIMULATIONS OF MASSIVE STARS

Silicon-28 Radial Velocity
04200 -.

03820

03300 -

03130
| I
02800

vy (x10"3 km)
)

x (x10”73 km)

x (x1073 km)

4pi simulations of oxygen shell burning find bipolar flow near
collapse in simulation of 18 solar mass star. (Muller +2016)
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IMPACT OF
EXPLOSION M

400
-£00 -300 -200 -100 ©0©
z (km)

3D initial progenitor

PRO G

ENITORS ON

100 200 200

ECHANISM

30. -
23. ' 150
16, -
0.0 100
2.0
50
£ o
By

-150

-150 -100 -50 0

z (km)

5¢ 1ee 150
1D initial progenitor

(Muller + 2017)
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MPACT OF PROGENITORS ON
- XPLOSION MECHANISM

Large mach numbers cause density fluctuations favorable for explosion.
oplp & M o0

Increase mass in gain region due to non-radial flow in post-
shock region.

Qv x M gain
(Muller + 2017)

Increase in non-radial kinetic energy at large scales.

(Couch + 2014, 2015)
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3D CCSN PROGENITORS

3D Simulations of a
15 M@ star



MULTI-DIMENSIONAL

SIMULATIONS OF

2/3D Hydrodynamic
simulations using FLASH.

Evolved ~7 minutes collapse
using approximate network.

15 M, progenitor.

(kg barvon -)

MASSIVE STARS

—
L

Sy D D
T 'III!TI

Stellar input model profiles from

Fields & Couch 2020.
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MULTI-DIMENSIONAL
SIMULATIONS OF MASSIVE STARS

* 3D model evolved using
FLASH.

» Shell convection

occurring at many scales.

* Perturbations imply
indirect increase in
effective neutrino
heating efficiency.

Volume rendering of the velocity field for 3D progenitor
model near collapse (Fields & Couch 2020).
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MULTI-DIMENSIONAL
SIMULATIONS OF MASSIVE STARS

3D32kmPert.

Y

.

1 B

* 4 pi 3D model shows

200
large scale plumes.

%k.. ‘ T’_H_ll_ll_ll_ﬂ_'ll_l

* Strong Si-shell
convection.

—200
* Convective speeds of
|

several hundred km/s. |

hu_M IL [

Slice of the radial velocity field of 3D progenitor model a
few seconds before collapse (Fields & Couch 2020).

'

6000 kin | 4i()

Urae. (km s7h)
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MULTI-DIMENSIO
SIMULATIONS OF

Significant increase in 0 e e Lo (9
Si-shell mach numbers oo i mhad T
at late time. 006 B
Oxygen-shell reaches gnm— ~
steady values earlyon. \ :
| 0.02F \ T
Values in O-shell lower _ \\V\‘
than previous studies I T T
W16 18 20 22 2

(Muller+2016)

N AL
MASSIVE STARS

3D32kmPert

Angle average mach number profiles for 3D model at

different times (Fields & Couch 2020).



MULTI-DIMENSIONAL

SIMULATIONS O

* 1D MESA model
matches Si-shell
convection well.

* Largely under predicts
O-shell speeds and
extent.

* 1D approximation good,
IN some cases.

- MASSIVE STARS

—r——
i ——  3D32kn |
~ 3U0F —— 3D0ct32km

N e —— 3DUct16kn -
e ADAZKMPEYT.

Angle average mach number profiles for all models at

different times (Fields & Couch 2020).
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CONVECTION IN MASSIVE STARS

Convection in multiple
3D Progenitor Models



3D simulations using FLASH

for 14-,20-, and 25 M models.

Evolved ~10 minutes collapse

using approximate network.

—.0.15

20.30
005 4= -
‘.—) ("(']:1 1 l’.ll\H: mi- || ILJ_LLul-l ll.ll:

MASSIVE STAR CONVECTION IN
MULTIPLE PROGENITORS

) Initial 1) MESA Models
- - -)[.'(] R T TrrrTy l'l' T LI ' L] L ] L] L) L 'l T TrrrTy LI L
.la w— ] 4] o, -
m 1HOF —— 20m  —=- 1Sm— FC20
= 0 ]
=4 100F ]
= raLk ) N
5 I’O_ ~. i
1,(]_]1|lllllllllllll\ II 1 | II IIII‘IIIIIIIIIIL

R

().%
Al;\* 2 ~ - _———’-——A R
= 0.0 l E
,;. . e l‘ -
1 _ | :
(.2 \ =
'
[“' (] 1 1 [RrL T CYTIT T N T l&\ | 1_1L1_.LL1_L1LJ_L‘.‘
i BRRRLERENRRRRRERREN BN ISR EARERRRRANERRE

Initial 1D profile structure for 3D models.
(Fields & Couch 2021a.) 20



MULTIPLE PROG

Models vary in convective
speeds!

Large-scale tlow
observed in 20 M,
model.

oplp & M o

MASSIVE STAR CONYV

ENITORS

t—tcc=-500.0

“CTION

9

N

21



SIMULATIONS OF

CONVECTION IN
PROGENITORS

Smaller O-shell Region,
smaller mach
numbers,~0.04!

Convection occurring at
broad range of scales.

MASSIVE STAR
MULTIPLE

Myanvs = 14M@
t—t. =—300 (s)

Volume rendering of the velocity field for 3D progenitor
model near collapse (Fields & Couch 2021a.).
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MULTIPL

MASSIVE STAR CONYV

L =300 (s)

20m_ell a1

C-ingestion in the O-shell region affected by initial perturbations.

PROGENITORS

t =550 (s) t = 0639 (

(52 -175)x107*M yr!

\

~CTION I'N

0.15

0.10

10.05

0.00

(Fields & Couch 2021a.).
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3D CCSN PROGENITORS

3D Evolution of a Rapidly
Rotating 16M, Star



CONVECTION IN RAPIDLY
ROTATING PROGENITORS

3D simulations using FLASH
for 1T6M, model.

Rotation initialized to 350 km/s
at ZAMS.

Evolved the final 10 minutes to
iron core-collapse.

Includes complete iron core.

Initial 11 MESA Model

=13.5

—— . ——

=) w \

-—"li)"'.l Ll l Lt 1l 11 II‘TT""T}_“!"\i‘ 1'n",—\
-\ Ve
|

— l.”“ } | - -

— .

-~

= - X (%0
+= () TR
=070
o]

= 0.50F

oo

@ 0.25) == -

o

H.‘ ) ‘.111'11‘_'_1;11111
POHDTTOR .

Initial 1D profile structure for 3D model.
(Fields 2021, in prep.)
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MASSIVE STAR CONVECTION IN

ROTATING PROGENITORS

*Preliminary*

*» Broad convective
scales

* Relatively weak Mach
numbers ~0.04.

» Weak Si-shell
convection.

Volume rendering of the Ne-20 mass fraction.

(Fields 2021, in prep.)
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MASSIVE STAR CONVECTION IN
ROTATING PROGENITORS

*Preliminary*
Convection across a 17 ~16m =0 — Shell
t—toe = —300 (s) = ¢ —tee = —20 (s)
range of scales. R {—toc=—M0 () —— bt =-5() |
16_ t —toe = —100 (s) — t—toe = —2(s) 4

~~ t —tce = =90 (s) — et = =1 (8)

Flow tends towards
large scales at late

times (£ = 3,3.7).

. | u | | | |
ek 0"
4
Spectrum of radial velocity field for 3D rotating progenitor.
(Fields 2021, in prep.)



MASSIVE STAR CONVECTI

NONVANRENICE & {O)C

ENITORS

ON IN

*Preliminary*
AM profile diverges . t =~ too (s
. I T ] L UL | LB
from MESA in i ]
convective regions. < 7
We find a NS spin 31 /]
. 2L15H /=
period of — r-
P ~ 1.42 (ms) at o .
collapse. = F— L : |
=== MESA | SI{ |O
. 1‘ . I ] -;I 1 l.l . I I R l{l :I | I I |
MESA model finds 0.0 03 I
m (Vg

P~ 141 (ms).

Angular momentum profiles for rotating 3D progenitor.

(Fields 2021, in prep.) 27



MASSIVE STAR CONVECTION IN

ROTATING PROGENITORS
*Preliminary* —
= 133 |
Advective term in non- 9 20} — =5 _

convective regions.

Angular momentum
flux components.

Positive flux in the O-

| I I T Y | I L1 | || I I L1 L1
shell. 5 N S P R N A X
Fturb < > &)

PVrJy

Angular momentum flux profiles.

(Fields 2021, in prep.) 28



3D CCSN PROGENITORS

CCSNe using
3D Progenitors



CCSN EXPLOSIONS OF MULTI-D
PROGENITORS

1/2/3D CCSN

simulations.

Use 2D/3D
progenitors.

Multi-group/species,
energy/velocity
dependent neutrino
transport, M1.

(km)

_

<7°shock

320

*Preliminary*

240
160

80}

tph (ms)

Mean shock radius evolution for multi-D CCSN models
(Fields + 2021b, in prep.).

- = 3D — 3D FLASH 2D — 1D Avg.  —— 1D — MESA .
2D — 2D FLASH ~ —— 1D — 1D Avg. :
IIIIIIII i(l)(l)l L1 11 I2I[I)[I)I I I3Iébl I I4I[I)[I)I | I5I[I)bl I Iéoo
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CCSN EXPLOSIONS OF MULTI-D
PROGENITORS

*Preliminary*

3D model

approaching shock
runaway.

Large non-radial
kinetic energy.

Slice of entropy in the x-y plane for 3D CCSN model
(Fields + 2021b, in prep.).
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IMPACT ON MULTI-MESSENGER
ASTRONOMY

Frequency [HZz]

Impact of 3D progenitor on GW emission?

0.0

-0.5

-1.0

-1.5

-2.0

-2.5

Normalized GW Strain

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
t — thounce [5] t — teounce [S]

(O'Connor & Couch, 2018)

Si-shell perturbations shown in GW emission.
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CCSN EXPLOSIONS OF MULTI-D
PROGENITORS

Impact of perturbations on GW emission?

IIITIIIII|IIIIIIIII|IIIIIIIII|lllll]llllllllllll

—

A

8_ Si-shell —~— \ ”;
E | | l
S AR
< 4 i liE
—8f mwws — 2B S
60 80 100 120 140 160

ton (ms)
(Fields + 2021b, in prep.).

Si-shell perturbations shown in GW for fw ~ 150 — 600 (Hz).
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IMPACT ON MULTI-MESSENGER
ASTRONOMY

Impact of 3D progenitor on neutrino emission?

t = thyunce = 330ms; (N, — NDQ:'/((Nve - No,_,)o) t = thounce = 440ms; (N,, —Nfae)/((Nve oy ND,,)Q)

(O'Connor & Couch, 2018)

lepton-number emission self- sustained asymmetric

(LESA) - sustained by asymmetric convection?
33



IMPACT ON MULTI-MESSENGER
ASTRONOMY

Viadial

-30 -20 -10 © 10 20 30
x (km)

(Muller+, 2020)

Asymmetry in electron fraction, less in radial
velocity - signature of LESA. %



IMPACT ON MULTI-MESSENGER
ASTRONOMY

MNTAS D00, =21 (2021} Praprint 27 September 2021 Compiled uging MNTTAS TATEX style file vi.0

The Collapse and Three-Dimensional Explosion of
Three-Dimensional Massive-star Supernova Progenitor

Models

David Vartanyan'*, Matthew S. B. Coleman®, Adam Burrows®

r

= Deparimend af Phyrics and Azsitmnomy, Unsveranty of Californaa. Berkeley, CA 94720, VS A

“ Department af Astrophysical Sesences, § Ly Tane, Princeton University, Princetan, NJ 08544, USA

(arxiv.org/abs/2109.10920)

Other groups using 3D progenitors as input. Check
out this recent work!
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CONCLUSIONS & SUMMARY

3D models of stellar convection necessary for accurate description
Of state Of mOdeI near CO”apse (Fields & Couch, 2020, ApJ; Fields & Couch 2021, ApJ)

* Convection occurring at many scales, large dominant mode near collapse
* 3D instabilities can affect flow properties and mass entrainment

*  Mach number profiles show favorable conditions for explosion.

3D rotating progenitor models ALSO necessary

(Fields, 2021, in prep.)
* Redistribution of AM diverges from MESA model. Implications for remnant.

* Turbulent transport of AM in convective shell regions.

Multi-D models can provide input for successful CCSN models

* Larger non-radial kinetic energy when using multi-D progenitor input

e 3D CCSN model showed prompt convection, asymmetric shock runaway

* Explosion properties suggest robust impact on multi-messenger signals
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